Transport effects and characteristic modes in the modeling and simulation of submicron devices

نویسندگان

  • Joseph W. Jerome
  • Chi-Wang Shu
چکیده

This paper has two major goals: (1) to study the effect of the common practice of neglecting the convective terms (inertial approximation) in the hydrodynamic model in the simulation of n+-n-n+ diodes and two dimensional MESFET devices; and, (2) to test analytical criteria, formulated in terms of characteristic values of the Jacobian matrix, as a method of determining the impact of first derivative perturbation terms in this model, and in related energy transport models. This characteristic value analysis can be thought of as generalizing the usual analytical solution of first order linear systems of ordinary differential equations with constant coefficients. Concerning (1), we find that the inertial approximation is invalid near the diode junctions, and near the contact regions of the MESFET device. In regard to (2), we find a proper arrangement of terms, expressing the flux, such that the first derivative part of the system is hyperbolic, both for the hydrodynamic model and the energy transport model. For the hydrodynamic model, two forms of the heat conduction term are studied, including the case of a convective term. This suggests and validates the use of shock capturing algorithms for the simulation. Acknowledgements: The first author is supported by the National Science Foundation under grant DMS-9123208. The second author is supported by the National Science Foundation under grant ECS-9214488 and the Army Research Office under grant DAAL03-91-G-0123 and DAAH04-94-G-0205. Computation supported by the Pittsburgh Supercomputer Center and by NAS. ∗Department of Mathematics, Northwestern University, Evanston, IL 60208 †Division of Applied Mathematics, Brown University, Providence, RI 02912

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple General-purpose I-V Model for All Operating Modes of Deep Submicron MOSFETs

A simple general-purpose I-V model for all operating modes of deep-submicron MOSFETs is presented. Considering the most dominant short channel effects with simple equations including few extra parameters, a reasonable trade-off between simplicity and accuracy is established. To further improve the accuracy, model parameters are optimized over various channel widths and full range of operating v...

متن کامل

Behavioral Modeling and Simulation of Semiconductor Devices and Circuits Using VHDL-AMS

During the past few years, a lot of work has been done on behavioral models and simulation tools. But a need for modeling strategy still remains. The VHDL-AMS language supports the description of analog electronic circuits using Ordinary Differential Algebraic Equations (ODAEs), in addition to its support for describing discrete-event systems. For VHDL-AMS to be useful to the analog design ...

متن کامل

Numerical Simulation and Parametric Reduced Order Modeling of the Natural Convection of Water-Copper Nanofluid

In this article, a coupled computational framework is presented for the numerical simulation of mass transfer under the effects of natural convection phenomena in a field contains water-copper Nano-fluid. This CFD model is build up based on accurate algorithms for spatial derivatives and time integration. The spatial derivatives have been calculated using first order upwind and second order cen...

متن کامل

Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell

In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters,   complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...

متن کامل

Conductivity Coefficient Modeling in Degenerate and Non-Degenerate Modes on GNSs

Carbon nanoscrolls (CNSs) with tubular structure similar to the open multiwall carbonnanotube have been of hot debate during recent years. Due to its unique property, Graphene Nanoscroll (GNS) have attracted many research groups’ attention and have been used by them. They specially studied on energy storage devices such as batteries and super capacitors. These devices can be schematically...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. on CAD of Integrated Circuits and Systems

دوره 14  شماره 

صفحات  -

تاریخ انتشار 1995